
Using Ontologies to Formalize Services Specifications in 
Multi-Agent Systems 

Karin Koogan Breitman, Aluizio Haendchen Filho, Edward Hermann Haeusler, 
Arndt von Staa 

(karin, aluizio, hermann, arndt]@inf.puc-rio.br 

Abstract. One key issue in multi-agent systems (MAS) is their ability to in- 
teract and exchange information autonomously across applications. To secure 
agent interoperability, designers must rely on a communication protocol that 
allows software agents to exchange meaningful irformation. In th is  paper we 
propose using ontologies as such communication protocol. Ontologies capture 
the semantics of the operations and services provided by agents, allowing in- 
teroperability and information exchange in a MAS. Ontologies are a formal, 
machine processable, representation that allows to capture the semantics of a 
domain and, to derive meanin,$ul information by way of logical inference. In 
our proposal we use a formal knowledge representation language (OWL) that 
translates into Description Logics (a subset of first order logic), thus eliminat- 
ing ambiguities and providing a solid base for machine based inference. 
The main contribution of this approach is to make the requirements explicit, 
centralize the specification in a single document (the ontology itself), at the 
same that it provides a formal, unambigous representation that can be proc- 
essed by automated inference machines. 

1 Introduction 

The anchor of our research is the multi agent architectural framework proposed in 
[Haendchen03]. So far we have analyzed the architectures of several multi agent 
platforms, notably MESSAGE pvansOO], ZEUS [AzarmiOO], JADE [Vitaglione02] 
and proposed a framework whose innovative structural model overcomes most flexi- 
bility shortcomings of other platforms at the same time that promotes large scale 
architectural reuse. The Agent Framework is described in detail in maendchen03, 
Haendchen041. 

In the elaboration process of the Agent framework, we have identified the need for 
a reference model that centralized the requirements for the services pro- 
videdrequested by agents operating within our domain in a meaningful way. The 
initial service specification was written in XML. The document was structured to 
reflect the MAS architecture hierarchy, i.e., each section corresponded to  one of its 
architectural layers. Although highly structured, this document did not provide any 
further semantics to aid either the understanding, verification or validation of the 
specification. Agents could only interact if they shared the exact same specification. 



No negociation was possible, for the semantics of the services can not be fully 
expressed in XIvE.. 

We decided to migrate to a more expressive representation. Ontologies were the 
natural choice, as they are becoming the standard for information interoperability on 
web [Gom6z-Per&O4]. With the adoption of a ontological representation it was pos- 
sible to formalize terms used in the previous XML service specification, i.e, services, 
objects, agents and components present in the architecture and the desired ways in 
which they should interact. In addition to the required syntax, the ontology specifica- 
tion was enriched with semantic content, thus allowing automatic verification, vali- 
dation with users, and the possibility of negotiating with agents using different ser- 
vice specifications. Different ontologies can be. negotiated through the processes of 
alignment, mapping OT mer,oing [McGuinessO2, Bouquet03, Breitman03bl. This 
problem is defined as semantic cocxdination and can be described as the situation in 
which all parties have an interest in finding an agreement on how to map their mod- 
els but given that there is more than one possibility, the right one (or a sufficiently 
good one) must be chosen @ouquetO3]. 

An ontology serves as the seryice specification of an agent operating in the do- 
main, and will be used in making ontological commitments among other software 
agents fFenselOl]. h ontological commitment is an agreement to use a vocabulary 
in a way that is consistent with respect to the theory specified by the ontology, i.e., an 
agreement on what local models are about to achieve user goals l’I3ouquetO31. We 
build agents that commit to our ontology. Conversely we design ontologies in order 
to share knowledge with and among these agents [Gruber93]. The ontology concen- 
trates the desired behaviors and ,service descriptions in a single document. It serves 
both as a specification and the reference model to which the agents operating in the 
domain should comply to. 

The rest of the paper is divided as follows: in the next section we kef ly  introduce 
the ontology definition and representation language we adopted in the context of our 
research. In section 3 we describe the context of our MAS. In section 4 we show an 
example of our approach. In section 5 we briefly describe the lessons learned from 
this experience and, finally in section 6 we provide our conclusion remarks and fu- 
ture work. 

2 Ontology 

In order to secure interoperability among autonomous agents, a protocol in which to 
exchage fie ~ ~ p c s s ~ r y  hfnm.ation to support this process is required. We argue 
that ontology, commonly defined in the literature as a specifirarion ofa concephcali- 
.mion, is the representation that will provide this requirement [GNbe198]. On one 
hand ontologies are expressive enough to capture the essential attributes present in 
MAS, in terms of their classes and relationships. On the other hand, ontologies pro- 
vide the necessary formality in which to perform automated inference and model 
checking. According to Tim Berners Lee, ontologies will allow machines to process 
and integrate Web resources intelligently, enable quick and accurate web search, and 

. 



facilitate communication between a multitude of heterogeneous web-accessible 
agents [Berners-LeeOl]. 

We adopt the ontology structure 0 proposed by Maedche [Maedche02]. According 
to the author, an ontology can be described by a 5-tuple consisting of the core ele- 
ments of an ontology, i.e., concepts, relations, hierarchy, a function that relates con- 
cepts non-taxonomically and a set of axioms. The elements are defined as follows: 

0 : = { C, R, HC, re], Ao} consisting of : 

Two disjoint sets, c (concepts) and R(re1ations) 
A concept hierarchy, HC: HC is a directed relation Hc E C x C which is 
called concept hierarchy or taxonomy. HC (Cj, Cz> means Cl is a subcon- 
cept of Cr 
A function ref: R -+ c x  c that relates the concepts non taxonomically 
A set of ontology axioms Ao, expressed in appropriate logical language. 

Most existing ontology representation languages can be mapped to this structure, 
e.g. RDF, Oil and DAML, but there seems to be a consensus to adopt OWL as the de 
facto language to represent ontologies. OWL is being developed by the W3 consor- 
tium as an evolution of the DAML standard [HjemOl, Hendler00, McGuiness031. 
The OWL Web Ontology Language is designed for use by applications that need to 
process the content of information instead of just presenting information to humans. 
OWL facilitates greater machine interpretability of Web content than that supported 
by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along 
with a formal semantics. The OWL specification comprises three increasingly- 
expressive sublanguages: OWL Lite, OWL DL, and OWL Full. OWL. Lite supports 
classification hierarchies and simple constraints, e.g., cardinality. It is intended as 
quick migration path from taxonomies and thesauri, i.e., that are free from axioms or 
sophisticated concept relationships. OWL DL supports "expressiveness while retain- 
ing computational completeness (all conclusions are guaranteed to be 'computed) 
and decidability (all computations will finish in finite time)" ~cGuineesO31. 
DAML-tOIL is equivalent, in terms of expressiveness, to OWL DL. Finally, OWL 
Full supports maximum expressiveness. According to the W3 consortium, it is 
unlikely that any reasoning software will be able to support complete reasoning for 
every feature of OWL Full. 

The existence of a large repository of ontologies also influenced our decision to 
migrate to OWL as the ontology representation language used in our projects. In 
table I we show the mapping between the nomenclature used by the 0 ontology 
model and the one adopted by OWL 



Table 1. Tenninology mapping between the 0 ontology structure and the ontology lan- 
- w e  OWL 

Class 

Subsumption relationship: 
R Relation property 

ire1 I function that relates the con- I Restriction 
I 

I cepts non taxonomimlly I 
AO l ~ x i o m  I Axiom I 

OWL provides the modeling primitives used in frame based systems, i.e.. concepts 
(or classes), the definition of its superclasses and attributes. Relations are also de- 
fined, but as independent entities, properties, instead of class attributes. The primi- 
tives provide. expressive power and are well understood, allowing for automated 
inference. The formal semantics are provided by Description Logics @L). DLs also 
known as &nological logics, form a class of logic based knowledge representation 
languages, based on the primitives above [HorrocksOZ]. DLs attempt to find a fiag- 
ment of fmt order logic with high expressive power which still has a decidable and 
efficient inference procedure mewe1182, Heinsohn941. FaCT is a working example 
of a system that provides reasoning support (i.e.. consistency and subsumption 
checking) to OWL-encoded ontologies ~mocksOl]. 

An.OWL ontology is a sequence of axioms and facts, plus references to other en- 
tologies, which are considered to be included in the ontology. OWL ontologies are 
web documents, and can be referenced by means of a URI. Ontologies also have a 
non-logical component that can be used to record authorship, and other non-logical 
information to be associated with an ontology [OWL, McGuinessOS]. 

In the next section we present the MAS Framework we have been experimenting 
with and relate, the construction process of its service ontology. 

3 MASFramework 

AFnt-onented sofiware en-gineering extends the conventional components' de- 
velopment approach, leading to the construction of more flexible and component- 
based MASS [GrissO3], emphasizing reuse, lowcoupling, highcohesion and support 
for dynamic compositions. Rapid and problem-specific system construction can be 
attained thrcugh the use of model-driven development and reuse techniques in order 
to achieve a more flexible, adaptable, robust and self-managing application. These 
properties can be constituted by the combination of several technologies, such as 
component-based software engineering [GrissO3,24,38], frameworks posh99, 



Fayad99, Pree99, Roberts981, design patterns [Gamma95, Larman981, rule-based 
systems (Gelfond93, Paton95, YuOO] and now ontologies pensel03, Berners-LeeOl, 
HendlerOl]. The MAS Framework architecture comprises five layers: Domain, Multi 
Agent System (MAS), Agent, Module and Class. Figure 1 depicts the Framework 
architecture. Note that the Module and Class layers are located inside each agent, the 
modules are represented in Figure 1 by the circles labeled S30, S40, S50 and S51 
(the classes are not represented in the Figure. They are internal parts of the mod- 
ules). Note that there are two ontologies in the architecture, illustrated by circles S4, 
and S9. The first one, S4 is the upper ontology and contains the specification of 
shared domain services, i.e., infrastructure, interface and communication services 
that will always be instantiated by our Framework. This ontology was built by ex- 
perts and is part of implementation of the Framework. The second ontology, located 
at the MAS level, illustrated by circle S9 in Figure 1, represents the agent specific 
ontology. It contains hot spots where particular application services are to be speci- 
fied during the Framework instantiation process. As a consequence of the multi lay- 
ered architecture of the Framework, application services are specified under the 
domain level, Le., as leaves of the upper ontology. For all practical purposes, the 
agent specific ontology is a composition of the upper ontology (top levels) with the 
addition of the specification of application specific services at the bottom levels 
(MAS and agent). 

Each MAS centralizes its service specification in a single document (represented 
by the circle labelled S ,  in Figurel). In our architecture, agents preferentially receive 
services requirements through a single interface, instead of interacting directly with 
one another, using multiple interfaces. This communication is done using highly 
structured messages composed using the terminology formalized by the service 
ontology. This way, both the syntax required by the interface specification and the 
semantics associated to the terms used in the service request are now available. 
Providing clear semantics of of the terms in use, helps maintain clarity and 
transparency of the specification. It serves as an aid to the ontology validation 
process and also as a guide to non expert users in the processof including new 
service specifications at the agent layer. 

The.syntax of the services provided by each agent, and how they can be accessed, 
is provided by the interface specification. Thus, an essential part of the process is 
defining a syntactic description of each interface and how the services can be 
accessed. The aim of the service specification ontology is to identify the services 
associated with each agent, specifymg the main properties of these services. For each 
service that may be performed by an agent, it is necessary to document its properties. 
In particular we must identify inputs, outputs, pre-conditions, post-conditions, 
parameters, states, transitions and rules. 

Initially we used an XML document to serve as the service specification. It 
contained descriptions of the services provided and interface parametrization. 
Although structurally sound, the XML document was found semantically weak and 
unfitting to describe some aspects of the service specification, e.g., rules and states. 
Migrating to an ontological respresentation was a natural move. 



I I  I I / I  

ontology 

I -  - 

Fig. 1. - MAS Framework Arcbitectw 

We had to question ourselves whether it was possible to express all the necessary 
information in the MAS service specification using the available ontology languages. 
As presented in section 2, the current W3C recommendation language for ontology 
modelling is OWL, the evolution of previous efforts in finding a standard ontology 
language. OWL. comprises three different languages, the choice of which should be 
based in the level of expressiveness desired for the ontology in question. The first 
language, Lite OWL, was defbetively not expressive enough to capture the necessary 
information present in the service specification. Our choice was between OWL-DL 
and Full OWL,. The later, although allowing for maximum expressiveness, does not 
guarantee the possibility of automatic reasoning in computable time [OWL]. In our 
case, the use of inference to help verify overall specification consistency is very 
important, so we chose OWL-DL as the.prefmed language. The last ensures 
decidability and the existence of an efiaent inference mechanism for the ianguage 
~ c G I L ~ x I ~ ~ s O ~ ] .  This choice, however, came with an additional modelling overhead. 
OWL-DL does not directly provide some modelling primitives, e.g., class attibutes 
and an-ary relationships. Those can be obtained by means of some workarounds . 
rnis is common practice in the ma& up language ammunity. Assuricion %ma- 
Perez, Mariano Fernhdez-Upez and Oscar Corcho published a table of the most 
common workarounds (partially reproduced in Table II) [G6mez-PQez04]. 

- 



We build ontologies using the lexicon based ontology construction process pro- 
posed in  [Breitman03]. This process is influenced by our background in require- 
ments engineering and system specification and uses the Extended Lexicon of the 
Language ( E L )  [Breitman03c, Leite931, referred to as Lexicon from here on, as the 
starting p i n t .  We initiate the process by building a Lexicon that captures the VO- 
cabulary of our application, i.e., the basic concepts and the relationships that bind 
them together in an informal way (using natural language). The Lexicon models a 
series of definitions of the services, objects, agents and components, present in the 
MAS architecture, and the desired ways in which they should interact. Such defini- 
tions evolve from an informal, natural language lexical representation to a formal, 
machine processable, ontological representation through the application of the lexi- 
con-to-ontology mapping rules defined in preitman031. 

Table 2. M 

I constraints I I I 

The Lexicon represents domain information obtained with the help of well known 
elicitation techniques, e.g. questionnaires, observation, structured meetings. It cap- 
tures both the denotation and connotation of important domain concepts. Differently 
from usual dictionaries, that capture the meaning (denotation) of an entry, the L e i -  



con also captures its connotation, i.e., the behavioral response or impacts that a lexi- 
con entry might have in defining other entries pite931. 

To build the service specification Lexicon we started with the elicitation of impor- 
tant domain1 concepts. Those were present in the XML specification, but were not 
defined to satisfaction. To elicit their meaning, we applied questionnaires and shuc- 
tu rd  interviews with domain experts, i.e., the software en-heers involved in the 
construction of the first specificatio In Figure 2 we show an example of a lexicon 
entry. We depict the Advisor entry. The Lexicon elicitation and construction proc- 
ess is fully described in tBreitmanO31. 

Fig. 2 - Screen snapshot of the Lexicon entry Advisor in the C&L t d  

To generate the formal ontology we applied the process proposed by Breitman & 
Leite to the newly built Lexicon. This process consists of a set of rules that map 
Lexicon entries into the five ontological elements proposed by Maedche, described in 
section 2. 

Lexicon entries are typed in one of subject, object, verb or situation. Depending 

mapping to either an ontology concept or property. The notion of a Lexicon entry is 
mapped into the description of its correspondent ontology concept. Its behavioral 

u11 A%- LUG &-- L J p  0 .. CUuCI*... AztZ---t a- m t  ". nf rr.1-n l U I Y  ;o I" -rr--- annliprl tn -- the -- Tpyimn r3h-y and will result in 

?!esse note that we use the term domain in the broad sense, signifying the application do- 
main as a whole. In this case. our domain is the entire multi agent framework, for which we 
intend to build a service specification, as opposed to its top layer that is incidentally named 
domain as well. 



responses serve as an aid in the identification of ontology properties, concept restric- 
tions and non taxonomical relationships among ontology concepts. Axioms come 
from the identification of disjoint or generalization relationships held among Lexi- 
con entries. The lexicon based ontology construction process is described in detail in 
[Breitman03]. This process is supported by C&L, an Open Source tool that autc- 
mates great part of the lexicon to ontology mapping process. Some design decisions 
have to be taken by the software engineer and can not be fully automated [Breit- 
man03cl. The tool also provides automated support for the creation and management 
of Lexicons ~elicissim&]. In Figure 3 we show the upper service ontology. 

Fig. 3 - Upper service ontology 

In this section we described the construction of the upper service ontology. 
Specific services provided by the agents are specificied in the application ontology, 
located at the MAS level, as shown in Figure 1. As mentioned before, it is a direct 
consequence of the multi layer architecture of the Framework that specific agent 
services are specified as leaves, i.e., placed under the lowest levels of the upper 
ontology. Evidently, those services are particular to each implementation and can not 
be provided by the upper ontology. Those specifications must be included by a 
software engineer, as part of the implementation of the MAS itself, and vary case by 
case. In the next section we exemplify our approach. 

4 Academic Control System: an example 

To exemplify our approach we chose an academic control system MAS that tracks 
the undergraduate student advisement process. We focus on the services provided by 
the Advisor agent, as illustrated in  Fijgire 4. 

In the advising process, a student fills out a registration form with hisher name, 
student ID, the current Semester and the details of the course hdshe  would like to 
take. After sending the request, the student receives the final results, either an 



enabling password or the justdication for denying the request. The Advisor has the 
function of taking the student request and to conduct preprocessing, validating the 
student, verifying the syntactic aspects, checking the Viability of the schedule, to 
direct the request result for the student or providing a request status. 

Fig. 4. System generic architecture as proposed in ~ndchen03].  
academic mntrol MAS example 

instantiated to the 

The agent Chair can make a slot available whenever the class is full, and the 
agent Inxtructor can dismiss pre-requisites for a course. The instructor and chair 
agents exchange messages with human agents through welldefined and well- 
structured e-mail messages. The advisor receives the request and verifies syntactic 
aspects, if the student has the prerequisites to the intended courses and checks to see 
if there are vacancies in the desired classes. If these conditions are met, the advisor 
authorizes the request by si,ging it and gives the student the registration password 
needed to register for the course. If these conditions are not met, the advisor directs 
the request according to the arguments of the event to the student, instructor or to the 
chair. While the process is under way, the student can ask the advisor for informa- 
tion about the progress of the request by e-mail. In any case, the advisor returns the 
request to the student via e-mail, specifying the result. Based in this information we 
modeled the Lexicon of the services provided by the system. In the academic control 
MAS case we used interviews and observation techniques to help elicit lexical in- 
formation from the domain. 

Through a series of refinements, the academic control Lexicon was mapped to its 
formal ontology. This process was semi automated, for some human input is neces- 



t u3 

sary at specific decision points. The C&L open source tool automates this process 
and was used to support the construction of the academic system ontology [SilvaOS]. 

In Figure 5 we show a screen snapshot of the ontology of services provided by the 
academic control system. We focus on the the domain-out interface. Please note that, 
however some restrictions are defined at concept level, there is a great number of 
other restrictions inherited by its super classes (see the restriction box in the lowest 
right corner of Figure 5).  The super class of class domain-out is indicated by Classes 

box, namely domain-required2.) The ontology was implemented using the OilEd, a 
freeware tool for ontology editon developed at the University of Manchester, that 
exports to the chosen OWL format [BerchoferOl]. 

.r_ 

1 

Fig. 5. The ontology concept domain-out implement using the OilEd tool. 

We took special care to ensure overall model quality. We  have validated the 
Lexicon with the users and verified using inspections [KaplanOOJ The ontology was 
verified using the F a n  (fast classification of terminologies) inference engine, 
publicly available at [FaCTM]. The reasoning services provided by this tool include 

The # symbol that appears as a SUEX of the classes indicates the namespace of the class, 
Le., the name of ontology where the specification of the class resides. OWL and similar 
mark up languages do not require that all concepts in the ontology are specified in the same 
document. By using the namespace mechanism, it is possible to reuse concepts defined in 
other ontologies, provided that a valid path to that document is given. 



inconsistency detection, determining subsumption and equivalence (among classes) 
relationships. 

In Figure 6 we illustrate an inconsistency identified with the aid of of the 
inference mechanism. The ontology has axiom that states that the classes MAS 
Security Checking an Domain Security Checking are disjoint, i.e., their intersection 
is empty. This is is illustrated by the panel in left, that contains the list of axioms for 
the Academic Control ontology. In the right most panel we depict the ontology, as it 
was being built. In this process we specified a restriction in which a state would only 
be reached in the event that both MAS Security Checking an Domain Security 
Checking were activated. 

Fig. 6. Fnconsistency in dass domain-out 

This situation is an impossibility, for the classes are forcibly (as explicited by the 
axiom in the left pane) disjoint. During the construction of the ontology this fact 
passed noticed by the designers. The consequences this error may bring to the 
implementation of the MAS are very serious, for that may cause the agent to halt or 
io uiki z da& imp S"I%Z. Tgs f&t ~.ntn~?ti_c~!ly detected with the use of the 
reasoner, as illustrated in Figure 7. We depict three panes; In the first one we show 
the interface to the FaCT reasoner. This tool is built in common Lisp and makes 
inferences over a description logic representation of the ontology. The ontology 
editor, OilEd translates the ontology to SHIQ (---a description logic language 
dialect) and sends to the reasoner using a CORBA interface. On the second pane, 
middle one, we depict the log of the reasoning process. We enphasize that the class 
domain-out is unsatisfiable, but note that the reasoner also checks for errors in 

. 



subsumption relationships and class instances. The third pane, rightmost, illustrates 
the graphical display of the inconsistency in the OilEd tool. Similarly to this case, 
the reasoner helped us detect other inconsistencies in the ontology. We also 
performed manual verification, using a process very similar to software 
walkthroughs: we gathered a group of three designers and revisited the material 
during a planned meeting. The chief designer of the ontology served as group 
mediator and conducted the meeting. The errors found we mostly sintactical, e.g., 
classes, properties and restrictions wrongly named or typos. A few inconsistencies 
such as the one illustrated in Figure 6 were also found. We noticed that the 
inheritance mechanism makes it very hard to identify inconsistencies when they are 
the result of a composition of restrictions that appear in different levels, Le., one was 
defined at class level and the other was inherited from a super class. It is important 
to note that all of this type of inconsistencies were also detected by the reasoner in a 
later moment. We concluded that manual verification is worthwhile, for it helps 
identify problems that could not be otherwise detected. Practitioner should, however, 
focus in the terminology, usage and validation of ontological terms. Inconsistencies 
are more sistematically detected with the aid of an automatic reasoner. 

The reasoner was also useful in the identification of a group of classes that 
partook a similar setting. To illustrate this situation we present the example of class 
alert condition. This class, as illustrated in Figure 7, is  defined if two of its 
restrictions are true, namely in!= null and security-check = 7 )  . We 
defined this class in the ontology of the type SameClassAs, i.e., this is a necessary 
and sufficient condition to define any other class that possesses those requirements as 
a similar to class alert condition) 

Class domain-out of the Academic Control ontology is an example of a class that 
fullfills this requirement. We depict this class and its restrictions in Figure 8 as 
follows. Note that one of the restrictions was specified among the class natural 
restrictions, the second came as an inherited restriction from its super class, 
domain-required. This mechanism is very interesting to help ensure that some 
conditons are met across the ontology. 



Fig. 7. Class alert condition 

4p-a 

Fig. 8 - Class domain_ont, local and inherited restrictions 



As an illustration we also show the OWL code for the Domain-our class in Table 
3. Note the similarity to XML, and the fact that the language uses RDF constructors, 
e.g., subclassof. This is intentional and is a direct consequence of the "wedding 
cuke" architecture for ontology languages proposed by Tim Berners-Lee [Fensel03]. 
This model reflects the evolution of ontology mark up languages. Each new gain in 
semantics resulted in the construction of a new language layers, put on top a XML 
basis. The first layer was RDF, followed by RDF Schema. Because those were not 
expressive enough, a new wave of languages, including DAML, OIL. and now OWL 
was proposed and put on top of the RDF layer. The result is that an OWL document 
contains OWL specific markup as well as primitives imported from layers below, 
e.g., rdfs: label. 

Table 3. Example of OWL code for the domain-out class (partially represented) 
<owl:Class rdf:about='file:/C:/Documents/AcademicAplications.owlfldomain_out"> 

<rdfs:label>domain-out</rdfs:label> 
<rdfs:conrment><! [CDATA[l]~~/rdfs:ccmment> 
<oiled:creationDate><! [CDATA[2004-04-18T22:20:56zl]~~/oiled:creationDate~ 
<oiled:creator><! [CDATA[Karin]J></oiled:creator> 
<rdfs: suWlassOf, 

<owl:Clas 

' < /  rdfs : subclassof> 
<rdfs:subClassOf> 

rdf:about='file:/C:/OilED/ontologies/AcademicAplications.owl~domain~re~ired'/~ 

<owl:Restriction> 
<owl:onProperty 

<owl: hasclass> 

</owl:hasClass> 

rdf:resource="file:/C:/Documents/Karin/AcademicAplications.owl#publiC"/~ 

<owl:Thing/> 

</owl:Restriction> 
</rdfs:subClassOf> 
<rdfs:subClassOf> 

<owl:Restriction> 
<owl:onProperty 

rdf:resource="file:/C:/Documents/Karin/AcademicAplications.owl#void"/> 

We must finally remark that a great level of ontology reuse is achieved as a result 
of our multi level Framework architecture. Generic services provided by every MAS 
are specified by the upper ontology and need not be specified again. The only ser- 
vices that require a specification effort are those particular to the agent in question. 
Even so, some of the inputs, pre and post conditions may be inherited from the super 
class under which the service is to be specified. The reuse of specifications not only 
reduces overall effort, but also serves to ensure quality because we are making use of 
a specification that was built by experts (less prone to mistakes), was verified by 

inspection, and has been tested in other applications3. 

~ 

It is important to note that the upper ontology is continuously being refined as a result of 
reports from practitioners. 



5 LessonsLearned 

The evolution from the XML service specification to an OWL ontology was an over- 
all positive experience. Our initial concerns related to the power of the ontology 
representation to convey spedication details were lifted as we were able to model 
every concept in the service specification in the ontology. During this process some 
workarounds were needed, specially to formalize attributes such as function parame- 
ters and transitions. 

The use of the FaCT reasoner helped verify the ontology and improve its overall 
quality. Automatic verification helped detect: inconsistencies (pre and post condi- 
tions, parameters, undesireable situations), errors, and some omission. Additional 
verification mechanisms will have to be used, as strings (e.g. Regular expressions) 
are processed as a block by the reasoner. 

Our experience in building the service ontologies to support our MAS communi- 
cation exchange has shown that t h i s  task is a very complex one. Despite the exis- 
tence of methods to support ontology construction, it still remains more of a uaft 
than a science fFernandez-bpez97, Gruninger95, NoyOl-b, Sure03, Ushold96. 
Breitman031. The decisions that have to be taken during this process, e.g., decide 
whether a concept should be mapped into a class or property, are very difficult and 
require expertise in concept modeling. By the same rule, the workarounds that have 
to be used in order to represent relevant specification concepts in the ontological 
representation are not trivial. It requires the ability to identify such concepts and to 
engender a workaround that maximizes the power of expression of the ontology. 

Finally tool support for visualizing ontologies is still very poor. For ontology edi- 
tion we have been using OilEd and Prott5g6 WrchoferOl, NoyOl]. Both tools fulfill 
our current editing requirements and have proven very reliable and easy to use. Our 
main concern today is the need for a tool that allows for a better visualization of the 
ontology, to help in the validation process 4 . 

6 Conclusion 

In this paper we propose to using ontologies as a means to capture and publish the 
specifications of the services provided by the agents in a MAS. The ontology makes 
the requirements explicit, centralizes the specification in a single document, at the 
same that it provides a formal, unambigous representation that can be processed by 
automated inference machines [SowaOO]. The main contribution of this approach is 
to put in practice a standardized reference model when specifying new agents, com- 
ponents and object behavior in a MAS. We showed the feasibility of the approach by 

Both OilEd and ProtQt5 provide visualization plug-ins. Those are static drawings of the 
ontoloa, usually too big and cumbersome. Neither plug in provides the necessary function- 
ality required in the vatidation process. 



means of an example in which we constructed an ontology that specified the services 
provided within an academic control MAS. 

The change from an XML representation to a OWL resulted in real quality gain 
for the service specification. The current ontological representation is more reliable, 
for it can be automatically verified. Consistency is thus guaranteed by automatic 
inference. Furthermore Results from our analysis process (verification and valida- 
tion) confirm that the OWL specification is more consistent and error free than the 
previous XML one. 

The use of ontologies opens the possibility of interfacing with other MAS envi- 
ronments. As envisioned by James Hendler, the web of the future will be composed 
of a multitude of websites, network services and databases, each operating with its 
own local and contextualized ontology [HendlerOI]. There is an ongoing effort to 
support the integration and alignment of different ontologies, in order to support 
communication and services exchange @3reitman03-d, Bouquet03, McG~inessO;?]. 
The ability to align different ontologies will make it possible to probe and request 
services in truly open ended environments, such as the web [HeflinOl]. 

We are currently experimenting with semantic coordination of MAS ontologies.. 
We have developed a mechanism to align two different ontologies, CATO, that is 
publicly available in internet ~elicissimo04J. We are using this mechanism to help 
integrate MAS operating in the health care domain. Our current experiment is trying 
to integrate services provided by a multi agent system used for the diagnoses and 
treatment of altistic children to similar health care multi agent systems. Our inten- 
tion is to use the integration process to negotiate among different MAS thus provid- 
ing new services that were not initially available, e.g., we are currently trying to 
align our MAS to the Retsina Calendar Agent as to provide appointment services. 

The service specification ontology serves us in two ways. Externally of our 
Framework, the ontology communicates the semantics of the services provided by 
agents of our domain, thus allowing for exchanges among different MAS and inter- 
action with other agents in Open Ended environments, such as the World Wide Web. 
Internally to our Framework structural, the ontology serves as a formal specification 
of the catalog of services provided. Every agentkomponent operating within our 
structural model must abide to the specifications dictated by the domain services 
ontology. The same is true to components and objects. 

Future work includes the investigation of a visualization mechanism that would 
allow for the separation and display of services provided by each layer. The user 
interface of this mechanism will be inspired in the vision mechanisms of relational 
databases. At the same time we are considering the development of new plug ins that 
implement additional verification routines (e.g. lexical and syntactic analysers for 
strings - parameters, regular expressions), that are not currently covered by the in- 
ference mechanisms. 



7 References 

[Azarmi~]Azarmi N., Thompson S. ZEDS: A Toolkit for Building Multi-Agent Systems. 
Proweedings of Ff?k Annual Embracing Complexity Conference, Paris April 2000. 

[Bechhofdl] - Sean Bechhofer, Ian Horr&, Carole Goble, Robert Stevens. OilEd. a Rea- 
son-able Ontology Editor for the Semantic Web. Promedm . 5 of KJ2001, Joint Ger- 
man/Austrian conference on Artificial Intelligence, September 19-21, Vienna. Springer- 
Verlag LN.4I Vol. 2174, pp 396-408.2001. 

[Bemers-Leeoll- Berners-Lee, T.; Lassila, 0. Hendler, J. - The Semantic Web - Scientific 
h E l i C a n  - ~ : / l w w w . s c i e n t i f i ~ n c ~ . ~ ~ 1 / 0 5 0 1 ~ ~ 5 0 1 ~ ~ ~  

[Bosh991 - Bosch, J., M o b  P., Mattsson M.; Bengtsson P.; Fayad M. Framework problem 
and experiences in M.. Fayad, Building Application Frameworks, John Willey and Sons, p. 
55-82.1999. 

[Bouquet031 -Bouquet, P.; Seraiini. L ;  Zanobini, S.; - Semantic Coardinaticn A new aporach 
and an application - in Proceedings of the 2nd. International Semantic Web Conference - 

preitman031 - Breitman, KK; Leite, J.CS.P - Lexicon Based Ontology Construction - Lec- 
ture Notes in Ccmputer Science 2940- Springer-Verlag, 2003, pp. 19-34. 

[Breitman03b] - Breitman, ILK_, Leite, J.C.S.P. - Semantic Intercperabfity by Aligning 
Ontologies - Prouxdin,os of the Requirements Engineering and Open Systems (RE0.S)- 
Workshop at RED3, Monterey, USA, September 2003. 

[BreitmanO3c] - Breitman, K.K., k i te ,  J.C.SS.: Ontology as a Requirements Engineering 
product. Proceedings of the International conference an Requirements Engineering, IEEE 
Computer Society Press, 2003. pp. 309-319 

[Evans001 - Evans, R “MESSAGE: Methodolo,g for Engineering System of Software 
Aggts”. Deliverable 1, July 2O00.~aCTO4] - h t t p ~ / / / w w w . c s . m a n . a c . u k / - h ~ ~ ~ ~ a ~ /  

payad991 - Fayad ME. et al. “Building Application Frameworks”. John Wiley & Sons, Inc. 
New Yak,  1999. 

~elicissirnoo4] - Felin’ssimo, C H ;  kite., J.C.S.P., Breitman, KK, Silva, LES. - c&L: Um 
Ambiente para EdiGHo e Visualizapo de Cenirios e Uxicos - XVIIU Simp6sio Brasileim 
de Engenharia de Software (SBES) -Brasilia - 18 a 22 de Outubro de 2004 - to appear. 

PenselOl] - Fensel, D. - Ontologies: a silver bullet for knowledg management and elec- 
tronic commerce - Springer, 2001- Fensel, D. - Ontologies: a silver bullet for knowledge 
management and electronic commerce - Springer, 2001 

@?ensel031 - Fensel, D.; Wahlster, W.; Berners-Lee, T.; editors - Spinning the Semantic Web 
-ME Press, Cambridge Massachusetts, 2003. 

[Fernandez-Lopez97]- M. Fernandez, k Gomez-Perez, and N. Juristo. METHONTOLOGY 
From Ontological Arts Towards Ontological Engineering In proceedings of the AAA197 
Spring Symposium Series on ontological Engineering, Stanford, USA, pages 33-40, 
March 1997. 

[Gamma951 - Gamma E. et al. ‘Design patterns - elements of reusable object-oriented soft- 
ware.’’ Addison-Wesley Longman, Inc., 1995. 

[Gelfond931 - Gelfond M. ‘%presenting Action and Change by Logic Programs”. The Journal 
of Logic Programming. Elsevier Science Publishing Co, New York 1993. 

[Gruber93] - Gruber, T.R. - A translation approach to portable ontology specifications - 
Knowledge Acquisition - 5: 199-220 

Florida, October 2003 -pp. 130-143. 



[Gruber98] - Gruber, T. - A translation approach to portable ontology specifications. Knowl- 
edge Acquisition, 5(2):21-66, 1998. 

[Gruningeer95] - Gruninger, M.; Fox, M. - Methodology for the Design and Evaluation of 
Ontologies: Proceedings of the Workshop on basic Ontological Issues in Knowledge Shar- 
ing, UCAI-95 Canada, 1995. 

[Haendchen03] Haendchen Filho, A.; Staa, A.v.; Lucena, C.J.P. ”A Component-Based Model 
for Building Reliable Multi-Agent Systems”. Proceedings of 28” SEW - NASAAEEE 
Software Engineering Workshop, Greenbelt, MD. lEEE Computer Society Press, Los 
Alamitos, CA, 2004, pg 41-50. 

[HaendchenW] - Haendchen, A.; Caminada, N.; Haeusler, H.; von Staa, A. - Facilitating the 
Specification Capture and Transfcamation Process During the Formal Development of 
Multi-Agent Systems - Proceedings Of Third NASA/ IEEE Workshop on Formal 
Approaches to Agent Based Systems, Los Alamitos, California USA. To appear as LNCS, 
Springer-Verlag. 

[HeflinOl] - Heflin, J.; Hendler, J. -A  Portrait of the Semantic Web in Action - IEEE Intelli- 
gent Systems - MarcNApril - 2001. pp.54-59. 

[Heinsohn94] - J. Heinsohn, D. Kudenko, B. Nebel, and H.-J. Profitlich. An empirical analy- 
sis of terminological representation systems. Artificial Intelligence, 68:367-397, 1994. 

[HendledO] - Hendler, I.; McGuiness, D. - The DARPA agent Markup Language . IEEE 
Intelligent Systems. Vol 16 No 6,2000. pp.67-73. 

[HendlerOl] - Hendler, I. - Agents and the Semantic Web - IEEE Intelligent Systems - 
MarcMApril - 2001. pp.30-37 

[HjemOl] - Hejem, J .  - Creating the Semantic Web with RDF - Wiley, 2001 
[HorrocksOl] - Ian Horrocks and U. Sattler. Ontology Reasoning for the Semantic Web. In In 

B. Nebel, editor, Roc. of the 17th Int. Joint Conf. on Artificial Intelligence (ITCml), 
Morgan Kaufmann, pages 199--204.2001. 

[Horrocks02] - I Horrocks- Reasoning with expressive description logics: Theory and prac- 
tice- A. Voronkov, editor, Proceedings of the 18th International Conference on Automated 
Deduction (CADE 2002) 

[Kaplan00] - Kaplan, G.; Hadad, G.; Doom, J.; kite ,  J.C.S.P. -Inspecci6n del Lexico Exte- 
dido del Lenguaje- In Proceedings of the Workshop de Engenharia de Requisitos - 
WER’00 - Rio de Janeiro, Brazil - 2000. 

[Larman98] - Larman C. “Applying UML and Patterns”. Prentice Hall PTR. Upper Saddle 
River, NJ, USA, 1998. 

[Maedche02] - Maedche, A. - Ontology Learning for the Sematic Web - Kluwer Academic 
Publishers - 2002. 

[McGuiness02] - McGuiness, D.; Fikes, R..; Rice, J.; Wilder, S. -An Environment for Merg- 
ing and Testing Large Ontologies - Proceedings of the Seventh International Conference 
on Principles of Knowledge Representation and Reasoning (KR-2OOO). Brekenridge, COIC- 
rado, April 12-15, San Francisco: Morgan Kaufmann. 2002. pp.483493. 

[McGuiness03] - McGuiness, D.; Harmelen, F. - OWL Web Ontology Overview - w3C 
Working Draft 31 March 2003 

[Newell, 19821 Newell, A. (1982). The Knowledge kvel.  Artificial Intelligence, 1837-127. 
[NoyOl-bl - Noy, N.; McGuiness, D. - Ontology Development 101 - A guide to creating your 

first ontology - KSL Technical Report, Standford University, 2001. 
[NoyOl-b] - Noy. N.; Sintek, M.; Decker, S.; Crubezy, R.; Fergerson, R.; Musen, A. - Creat- 

ing Semantic Web Contents with ProttgC 2000 - IEEE Intelligent Systems Vol. 16 No. 2, 
2001. pp. 60-71 

[OilEd] - httpY/Oiled.man.ac.uk/ 
[OWL] - ht tp~/www.w3.or~Rowl- ref /  



Ipaton951 - Paton N.W. “Supporting Production Rules Using EXA-Rules in an Object- 
Oriented Context”. Department of Computer Science. Technical Report. University of 
Manchester, UK, 1995. 

wee991 - Ree, W. Hot-spot-driven development in M. Fayad, R Johnson, D. Schmidt. 
Building Application Frameworks: Object-Oriented Foundations of Framework Design, 
John Willey and Sons, p. 379-393, 1999. 

IRoberts981- Roberts D., Johnson R. Evolving &meworks: A pattern language for developing 
object-oriented frameworks in Martin R.C., Riehle D., Buschmann F. Addison- 
Wesley, 1998. 

corn Cen6rios - 17 Simp6sio de Engenharia de Software (SBES) - Manaus, AM - 2003 - 

[SowaOO] - Sowa, J. F. - Knowledge Representation: hgca l ,  Philosophical and Computa- 
tional Foundations - BrookdCole Books, Pacific Grove, CA - 2000. 

[Sure031 - Sure, Y.; Studer, R. - A methodology for Ontology based knowledge management 
in Davies, J., Fensel, D.; Hamellen, F.V., editors - Towards the Semantic Web: Ontology 
Driven Knowledge management - Wiley and Sons - 2003. pp. 3346. 

[Ushold961 - Ushold, M.; Gruninger, M. - Ontologies: Principles, Methods and Applications. 
KnowledgeEngineeringReview, Vol. 11 No. 2 - 19%. pp. 93-136 

[Vitaglione02] - Vitaglione G., Quarta F., C a s e  E. Scalability and Performance of JADE 
Message Transport System Proceedings of AAMAS Workshop on A g d i t i e s ,  Bologna, 
16th July, 2002 

fyuOO] - Yu L et al. “A Cmceptual Framework for Agent Oriented and Role Based Work- 
flow Modeling” Technical report, Institute for Media and Communications Management, 
University of St Gallen, Switzerland, 2000. 

[SilvaO3] - Silva, LF.; Say50, M., kite, J.C.S.P.; Brktman, KK - Enriquecendo o 

ISBN 85-7401-126-6 - pp.161- 176. 


